Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.05.11.443572

ABSTRACT

COVID-19 pandemic is not yet under control by vaccination, and effective antivirals are critical for preparedness. Here we report that macrophages and dendritic cells, key antigen presenting myeloid cells (APCs), are largely resistant to SARS-CoV-2 infection. APCs effectively captured viruses within cellular compartments that lead to antigen degradation. Macrophages sense SARS-CoV-2 and released higher levels of cytokines, including those related to cytokine storm in severe COVID-19. The sialic acid-binding Ig-like lectin 1 (Siglec-1/CD169) present on APCs, which interacts with sialylated gangliosides on membranes of retroviruses or filoviruses, also binds SARS-CoV-2 via GM1. Blockage of Siglec-1 receptors by monoclonal antibodies reduces SARS-CoV-2 uptake and transfer to susceptible target cells. APCs expressing Siglec-1 and carrying SARS-CoV-2 are found in pulmonary tissues of non-human primates. Single cell analysis reveals the in vivo induction of cytokines in those macrophages. Targeting Siglec-1 could offer cross-protection against SARS-CoV-2 and other enveloped viruses that exploit APCs for viral dissemination, including those yet to come in future outbreaks.


Subject(s)
COVID-19
2.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.04.23.055756

ABSTRACT

Different treatments are currently used for clinical management of SARS-CoV-2 infection, but little is known about their efficacy yet. Here we present ongoing results to compare currently available drugs for a variety of diseases to find out if they counteract SARS-CoV-2-induced cytopathic effect in vitro. Our goal is to prioritize antiviral activity to provide a solid evidence-driven rationale for forthcoming clinical trials. Since the most effective antiviral approaches are usually based on combined therapies that tackle the viral life cycle at different stages, we are also testing combinations of drugs that may be critical to reduce the emergence of resistant viruses. We will provide results as soon as they become available, so data should be interpreted with caution, clearly understanding the limitations of the in vitro model, that may not always reflect what could happen in vivo. Thus, our goal is to test the most active antivirals identified in adequate animal models infected with SARS-CoV-2, to add more information about possible in vivo efficacy. In turn, successful antivirals could be tested in clinical trials as treatments for infected patients, but also as pre-exposure prophylaxis to avoid novel infections until an effective and safe vaccine is developed.


Subject(s)
COVID-19 , Infections
SELECTION OF CITATIONS
SEARCH DETAIL